Abstract

We apply a novel method to extract the solar cycle signal from stratospheric data. An alternative to traditional analysis is a nonlinear empirical mode decomposition (EMD) method. This method is adaptive and therefore highly efficient at identifying embedded structures, even those with small amplitudes. Using this analysis, the geopotential height in the Northern Hemisphere can be completely decomposed into five non-stationary temporal modes including an annual cycle, a QBO signal, an ENSO-like mode, a solar cycle signal and a trend. High correlations with the sunspot cycle unambiguously establish that the fourth mode is an 11-year solar cycle signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.