Abstract

11-ketotestosterone (11-KT) is a novel class of active androgen. However, the detail of its synthesis remains unknown for humans. The objective of this study was to clarify the production and properties of 11-KT in human. Design, Participants, and Methods: Expression of cytochrome P450 and 11β-hydroxysteroid dehydrogenase types 1 and 2 (key enzymes involved in the synthesis of 11-KT) were investigated in human gonads. The production of 11-KT was investigated in Leydig cells. Plasma concentrations of testosterone and 11-KT were measured in 10 women and 10 men of reproductive age. Investigation of its properties was performed using breast cancer-derived MCF-7 cells. Cytochrome P450 and 11β-hydroxysteroid dehydrogenase types 1 and 2 were detected in Leydig cells and theca cells. Leydig cells produced 11-KT, and relatively high levels of plasma 11-KT were measured in both men and women. There was no sexual dimorphism in the plasma levels of 11-KT, even though testosterone levels were more than 20 times higher in men than in women. It is noteworthy that the levels of testosterone and 11-KT were similar in women. In a luciferase reporter system, 11-KT activated human androgen receptor-mediated transactivation. Conversely, 11-KT did not activate estrogen receptor-mediated transactivation in aromatase-expressed MCF-7 cells, whereas testosterone did following conversion to estrogen. 11-KT did not affect the estrogen/estrogen receptor -mediated cell proliferation of MCF-7 cells. Furthermore, it significantly inhibited cell proliferation when androgen receptor was transfected into MCF-7 cells. The current study indicates that 11-KT is produced in the gonads and represents a major androgen in human. It can potentially serve as a nonaromatizable androgen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.