Abstract

Herein, we fabricated all-polymer solar cells (all-PSCs) based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor, and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor. In addition to the complementary absorption and matching energy levels, the optimized blend films possess high cystallinity, predominantly face-on stacking, and a suitable phase separated morphology. With this active layer, the devices exhibited a high V oc of 0.96 V, a superior J sc of 17.1 mA cm−2, a fine fill factor (FF) of 68.2%, and thus an excellent power conversion efficiency (PCE) of 11.2%, which is the highest value reported to date for single-junction all-PSCs. Furthermore, the devices showed good storage stability. After 80 d of storage in the N2-filled glovebox, the PCE still remained over 90% of the original value. Large-area devices (1.1 cm2) also demonstrated an outstanding performance with a PCE of 9.2%, among the highest values for the reported large-area all-PSCs. These results indicate that the PM6 : PZ1 blend is a promising candidate for scale-up production of large area high-performance all-PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.