Abstract
Space travel and exploration are associated with increased ambient CO2 (i.e., a hypercapnic environment). Some work reported that the physiological changes (e.g., increased cerebral blood flow [CBF]) associated with a chronic hypercapnic environment contributes to a “space fog” that adversely impacts cognition and psychomotor performance, whereas other work reported no change or a positive change. Here, we employed the antisaccade task to evaluate whether transient exposure to a hypercapnic environment influences top-down executive function (EF). Antisaccades require a goal-directed eye movement mirror-symmetrical to a target and are an ideal tool for identifying subtle EF changes. Healthy young adults (aged 19–25 years) performed blocks of antisaccade trials prior to (i.e., pre-intervention), during (i.e., concurrent) and after (i.e., post-intervention) 10-min of breathing factional inspired CO2 (FiCO2) of 2.5% (i.e., hypercapnic condition) and during a normocapnic (i.e., control) condition. In both conditions, CBF, ventilatory and cardiorespiratory responses were measured. Results showed that the hypercapnic condition increased CBF, ventilation and end-tidal CO2 and thus demonstrated an expected physiological adaptation to increased FiCO2. Notably, however, null hypothesis and equivalence tests indicated that concurrent and post-intervention antisaccade reaction times were refractory to the hypercapnic environment; that is, transient exposure to a FiCO2 of 2.5% did not produce a real-time or lingering influence on an oculomotor-based measure of EF. Accordingly, results provide a framework that – in part – establishes the FiCO2 percentage and timeline by which high-level EF can be maintained. Future work will explore CBF and EF dynamics during chronic hypercapnic exposure as more direct proxy for the challenges of space flight and exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.