Abstract

This paper describes the design and performance of a 10-Gb/s laser diode (LD) transmitter and avalanche photodiode (APD) receiver, both of which are based on GaAs MESFET IC's. The LD transmitter consists of a strained MQW distributed-feedback LD and one chip LD driver IC. The module output power is +4.6 dBm at 10 Gb/s. The APD receiver consists of an InGaAsP/InAl/As superlattice-APD and an IC-preamplifier with the 10-Gb/s receiver sensitivity of /spl minus/27.4 dBm. As for the LD transmitter, we discuss the optimum impedance-matching design from the viewpoint of high-speed interconnection between LD and driver IC's. As for the APD receiver, the key issue is input impedance design of preamplifier IC, considering noise and bandwidth characteristics. Total performance of the transmitter and receiver is verified by a 10-Gb/s transmission experiment and a penalty-free 10-Gb/s fiber-optic link over 80 km of conventional single-mode fiber is successfully achieved. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call