Abstract

Abstract Background Previous histopathological studies have demonstrated that new atherosclerotic formation within the neointima, called neoatherosclerosis, is one of the most important mechanisms leading to both very late in-stent restenosis and stent thrombosis after stent implantation. Therefore, to distinguish lipid-containing atherosclerotic neointima from other tissues using intracoronary imaging modalities is clinically important to prevent late stent failures. Purpose This study evaluated the diagnostic performance of optical coherence tomography (OCT) for the detection of “in-stent fibroatheroma” following stent implantation by comparing cross-sections of the model with the corresponding histological images. Methods Fifty stented coronary arteries from the 31 autopsy hearts were imaged by OCT. Coronary arterial histopathological specimens, all of which included more than 30% of %neointimal hyperplasia, were compared with the corresponding OCT cross-sections. Histological in-stent fibroatheroma was defined as neointima containing large necrotic core and inflammatory cells. OCT-derived in-stent fibroatheroma comprised a low-intensity tissue containing a poorly delineated region with invisible stent strut behind low signal intensity. Results A total of 122 OCT cross-sections were compared with histological images. OCT examination revealed that 24 images (20%) contained low-intensity tissue inside the neointima. Of those, 5 images, in which stent strut behind low signal intensity was invisible, were diagnosed as OCT-derived in-stent fibroatheroma (4%) (Figure A). By histological analysis, only 4 images were classified as in-stent fibroatheroma (3%) (Figure B). With histology as the gold standard, the sensitivity, specificity, positive predictive value, negative predictive value, and overall diagnostic accuracy for OCT-derived in-stent fibroatheroma were 100%, 99%, 80%, 100%, and 99%, respectively. The only histological finding underlying the false-positive-diagnosis of OCT-derived in-stent fibroatheroma was foam cells accumulation without necrotic core on the neointimal surface (Figure C and D). Most tissue that showed low-intensity tissue with visible stent strut by OCT contained proteoglycan matrix and organized thrombus in the absence of an underlying necrotic core. Coregistration of OCT with histology Conclusion This study showed the potential capability of OCT based on the visualization of stent struts behind low-intensity regions for discriminating in-stent fibroatheroma from other neointimal tissues following stent implantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.