Abstract

Augmented reality (AR) is being investigated in advanced displays for the augmentation of images in a real-world environment. Wearable systems, such as head-mounted display (HMD) systems, have attempted to support real-time AR as a next generation UI/UX [1-2], but have failed, due to their limited computing power. In a prior work, a chip with limited AR functionality was reported that could perform AR with the help of markers placed in the environment (usually 1D or 2D bar codes) [3]. However, for a seamless visual experience, 3D objects should be rendered directly on the natural video image without any markers. Unlike marker-based AR, markerless AR requires natural feature extraction, general object recognition, 3D reconstruction, and camera-pose estimation to be performed in parallel. For instance, markerless AR for a VGA input-test video consumes ~1.3W power at 0.2fps throughput, with TI's OMAP4430, which exceeds power limits for wearable devices. Consequently, there is a need for a high-performance energy-efficient markerless AR processor to realize a real-time AR system, especially for HMD applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.