Abstract

A systematic study of the evolution of the nuclear structure (at low and medium energies) of odd-A 95–103Tc isotopes is presented. These changes are indeed affected predominantly by changes in deformation and subsequently the position of the Fermi level. Hence a complete study of previously observed positive and negative parity states (at low and medium energies) of 103Tc in the framework of the particle–rotor model is performed. Experimental energies and transition properties will be compared to those predicted by the model calculations. The systematic model calculations show that those rotational “multiplets” emerging as a result of the larger Coriolis mixing, especially among positive-parity Nilsson states of g9/2 parentage in less deformed isotopes 95, 97, 99, 101Tc, are just as natural a prediction of the model as rotational bands built on states of good Ω in well deformed 103Tc (strong coupling) as confirmed experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call