Abstract

Mutations in the human Mid1 gene cause Opitz G/BBB syndrome, which is characterized by various midline closure defects. The Caenorhabditis elegans homolog of Mid1, madd-2, positively regulates signaling by the unc-40 Netrin receptor during the extension of muscle arms to the midline and in axon guidance and branching. During uterine development, a specialized cell called anchor cell (AC) breaches the basal laminae separating the uterus from the epidermis and invades the underlying vulval tissue. AC invasion is guided by an UNC-6 Netrin signal from the ventral nerve cord and an unknown guidance signal from the vulval cells. Using genetic epistasis analysis, we show that madd-2 regulates AC invasion downstream of or in parallel with the Netrin signaling pathway. Measurements of AC shape, polarity and dynamics indicate that MADD-2 prevents the formation of ectopic AC protrusions in the absence of guidance signals. We propose that MADD-2 represses the intrinsic invasive capacity of the AC, while the Netrin and vulval guidance cues locally overcome this inhibitory activity of MADD-2 to guide the AC ventrally into the vulval tissue. Therefore, developmental cell invasion depends on a precise balance between pro- and anti-invasive factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call