Abstract

Abstract Background Cellulitis is misdiagnosed in up to 30% of cases, resulting in overuse of antibiotics. This represents a threat to patient safety and public health. Surface thermal imaging has been proposed as a tool to reduce errors in diagnosing cellulitis. The study objective was to compare skin surface temperature measurements between patients with cellulitis and pseudocellulitis. Methods We prospectively enrolled patients presenting to the emergency department (ED) with dermatologic lower extremity complaints that involved visible erythema. Using a thermal imaging camera, the maximum temperature value (Tmax) for the affected area of skin and corresponding area on an unaffected limb were captured. The Tmax gradient between the affected and unaffected limb was calculated. Gold standard diagnosis (cellulitis versus pseudocellulitis) was determined by consensus of a blinded, multidisciplinary physician review panel (two infectious disease, two dermatologists and two emergency medicine). Differences in temperature variables (Tmax and Tmax gradient) between cellulitis and pseudocellulitis were compared using t-tests. Results The sample included 204 participants, 59% male with an average age of 57 years. Based on expert panel consensus diagnosis, 92 (45%) of the participants had cellulitis. The cellulitis group had an average Tmax of 33.2°C and 30.2°C for affected and unaffected skin respectively, which was a significant difference of 2.9°C (CI: 2.5 to 3.6; p< 0.001). The difference in the Tmax gradients between patients with cellulitis and pseudocellulitis was 2.08°C (CI: 1.46-2.70; p< 0.001). Conclusion This represents the largest validation study of skin surface temperature differences between cellulitis and pseudocellulitis. Significant difference in temperature gradients between cases of cellulitis and pseudocellulitis suggests thermal imaging could be a useful diagnostic adjunct that can help differentiate these conditions. Such a modality could be particularly helpful in the ED setting where providers must balance diagnostic uncertainty with antimicrobial stewardship principles. Future work will identify the best performing temperature variables and determine optimal cutoff values for use in diagnostic algorithms. Disclosures All Authors: No reported disclosures

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call