Abstract

Introduction Delayed enhancement MRI (DE-MRI) has been established as a diagnostic imaging standard for myocardial viability assessment. The current reference standard for DE-MRI uses an inversion-recovery 2D gradient echo sequence to acquire images during repetitive breathholds. This breath-hold 2D (2DBH) technique requires significant patient cooperation and suffers from potential slice misregistration due to diaphragmatic excursions in different breath-holds. To overcome these limitations, navigator-gated 3D (3DNAV) DE-MRI has been developed using a diaphragmatic navigator to monitor respiratory motion and adjust data acquisition accordingly. Previous 3DNAV sequences employed the accept/reject gating algorithm with a fixed gating window which can lead to long imaging time in the case of a steady diaphragmatic drift.

Highlights

  • Delayed enhancement MRI (DE-MRI) has been established as a diagnostic imaging standard for myocardial viability assessment

  • The objective of this study was to develop a rapid and accurate free-breathing 3DNAV DE-MRI sequence using the drift-resistant phase ordering with automatic window selection (PAWS) gating algorithm and to evaluate its feasibility in routine clinical imaging with 2DBH DE-MRI as the reference standard

  • The 3DNAV sequence was incorporated into a routine cardiac MRI protocol on a 1.5 T GE clinical scanner and imaging was performed in 22 patients (10 men, mean age of 50 ± 19 years). 2DBH DE-MRI was initiated 10 min after contrast administration (0.2 mmol/kg) and followed by free-breathing 3DNAV DE-MRI

Read more

Summary

Introduction

Delayed enhancement MRI (DE-MRI) has been established as a diagnostic imaging standard for myocardial viability assessment. The current reference standard for DE-MRI uses an inversion-recovery 2D gradient echo sequence to acquire images during repetitive breathholds. This breath-hold 2D (2DBH) technique requires significant patient cooperation and suffers from potential slice misregistration due to diaphragmatic excursions in different breath-holds. To overcome these limitations, navigator-gated 3D (3DNAV) DE-MRI has been developed using a diaphragmatic navigator to monitor respiratory motion and adjust data acquisition . Previous 3DNAV sequences employed the accept/reject gating algorithm with a fixed gating window which can lead to long imaging time in the case of a steady diaphragmatic drift.

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call