Abstract
Sonic boom propagation over urban areas is studied using numerical simulations based on the Euler equations. Two boom waves are examined: a classical N-wave and a low-boom wave. Ten urban geometries, generated from the local climate zone classification [Stewart and Oke (2012), Bull. Am. Meteorol. Soc. 93(12), 1879–1900], are considered representative of urban forms. They are sorted into two classes, according to the aspect ratio of urban canyons. For compact geometries with a large aspect ratio, the noise levels and the peak pressure, especially for the N-wave, are highly variable between canyons. For open geometries with a small aspect ratio, these parameters present the same evolution in each urban canyon, corresponding to that obtained for isolated buildings. A statistical analysis of the noise levels in urban canyons is then performed. For both boom waves, the median of the perceived noise levels mostly differs by less than 1 dB from the value obtained for flat ground. The range of variation is greater for open geometries than for compact ones. Finally, low-frequency oscillations, associated with resonant modes of the canyons, are present for both compact and open geometries. Their amplitude, frequency and decay rate vary greatly from one canyon to another.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.