Abstract

In this paper, we present a comprehensive account of quantum dissipation theories with the quadratic environment couplings. The theoretical development includes the Brownian solvation mode embedded hierarchical quantum master equations, a core-system hierarchy construction that verifies the extended dissipaton equation of motion (DEOM) formalism [R. X. Xu et al., J. Chem. Phys. 148, 114103 (2018)]. Developed are also the quadratic imaginary-time DEOM for equilibrium and the λ(t)-DEOM for nonequilibrium thermodynamics problems. Both the celebrated Jarzynski equality and Crooks relation are accurately reproduced, which, in turn, confirms the rigorousness of the extended DEOM theories. While the extended DEOM is more numerically efficient, the core-system hierarchy quantum master equation is favorable for “visualizing” the correlated solvation dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.