Abstract

Predicting the long time or late time states of two-dimensional incompressible, high Reynolds number, slowly decaying turbulence has been one of the long-standing problems. Using “point vortices” as “inviscid” building blocks, which do not respect incompressibility, statistical mechanical models conserving only total energy and zero total circulation result in the well-known sinh-Poisson relation between vorticity and stream function. On the other hand, statistical mechanics of “inviscid patch” vortices, which respects incompressibility by conserving regions of zero and nonzero vorticity, predicts a generalized relaxed state, which has never been systematically compared with direct numerical simulations (DNS). In this study, starting from highly packed regions of nonzero initial vorticity, we demonstrate using high resolution, high Reynolds number DNS that the late time states agree with predictions from patch vortex models. As total circulation is reduced or diluted, we show that late time states of our DNS systematically and unambiguously lead to the sinh-Poisson relationship between vorticity and stream function. We believe that our quantitative findings solve one of the long-standing problems in two-dimensional turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.