Abstract
Rayleigh–Taylor instability (RTI) occurs when the interface between two fluids of different densities is removed, with the heavier (cold) fluid resting on top of the lighter (hot) fluid in the equilibrium state. This arrangement is unstable due to buoyancy, in the absence of any other forces. RTI is noted across a range of length scales from very small in nuclear fusion to supernova explosion at astrophysical scales. RTI is viewed as a baroclinic instability if viscous actions are ignored. An accurate non-overlapping parallel algorithm is used to solve a three-dimensional RTI problem, employing more than 4 × 109 points and a refined time step ( 7.69×10−8s) for the direct numerical simulation. Air masses at two different temperatures are initially separated by a non-conducting partition inside a box (with a temperature difference of 200 K). The impermeable partition is removed impulsively at t = 0, and the ensuing instability is triggered by an acoustic mechanism involving infra to ultrasonic pulses that travel to either side of the interface. Present high precision petascale computations enable one to capture acoustic disturbances with unprecedented accuracy without any additional interfacial disturbances. The creation of the vorticity is studied by performing enstrophy budget for the compressible flow for RTI, which shows that the viscous terms are dominant compared to the baroclinic one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.