Abstract
The behavior of shear-oscillated amorphous materials is studied using a coarse-grained model. Samples are prepared at different degrees of annealing and then subjected to athermal and quasi-static oscillatory deformations at various fixed amplitudes. The steady-state reached after several oscillations is fully determined by the initial preparation and the oscillation amplitude, as seen from stroboscopic stress and energy measurements. Under small oscillations, poorly annealed materials display shear-annealing, while ultra-stabilized materials are insensitive to them. Yet, beyond a critical oscillation amplitude, both kinds of materials display a discontinuous transition to the same mixed state composed of a fluid shear-band embedded in a marginal solid. Quantitative relations between uniform shear and the steady-state reached with this protocol are established. The transient regime characterizing the growth and the motion of the shear band is also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.