Abstract

We investigate local THz field generation using spintronic THz emitters to enhance the resolution for micrometer-sized imaging. Far-field imaging with wavelengths above 100 μm limits the resolution to this order of magnitude. By using optical laser pulses as a pump, THz field generation can be confined to the area of laser beam focusing. The divergence of the generated THz beam due to laser beam focusing requires the imaged object to be close to the generation spot at a distance below the THz field wavelength. We generate THz-radiation by fs-laser pulses in CoFeB/Pt heterostructures, based on spin currents, and detect them by commercial low-temperature grown-GaAs (LT-GaAs) Auston switches. The spatial resolution of THz radiation is determined by applying a 2D scanning technique with motorized stages allowing step sizes in the sub-micrometer range. Within the near-field limit, we achieve spatial resolution in the dimensions of the laser spot size on the micrometer scale. For this purpose, a gold test pattern is evaporated on the spintronic emitter separated by a 300 nm SiO2 spacer layer. Moving these structures with respect to the femtosecond laser spot, which generates THz radiation, allows for resolution determination. The knife-edge method yields a full-width half-maximum beam diameter of 4.9±0.4 μm at 1 THz. The possibility to deposit spintronic emitter heterostructures on simple glass substrates makes them attractive candidates for near-field imaging in many imaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.