Abstract

10.1063/5.0062228.1A room-temperature terahertz (THz) detector based on a thermoelectric frequency selective surface (FSS) has been numerically simulated, designed, fabricated, and tested. The FSS has been fabricated from a 150 nm thin Bi88Sb12 thermoelectric film with the engraved periodic Greek crosses. The detector prototype has been tested under the 0.14 THz radiation exposure and showed a voltage response due to the photo-thermoelectric effect up to 0.13–0.18 mV, and voltage responsivity equal to 14–20 mV/W. The detector based on the FSS has shown voltage responsivity up to three times higher in comparison with the detector based on the continuous film. Thermal imaging has shown a temperature increase in the FSS up to 1.5 K under the THz exposure. The obtained results demonstrate prospects for utilization of the Bi88Sb12 FSS detector as a low cost, compact, high-speed, highly sensitive room-temperature THz detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.