Abstract

Magnetic skyrmions are exciting candidates for energy-efficient computing due to their nonvolatility, detectability, and mobility. A recent proposal within the paradigm of reversible computing enables large-scale circuits composed of directly cascaded skyrmion logic gates, but it is limited by the manufacturing difficulty and energy costs associated with the use of notches for skyrmion synchronization. To overcome these challenges, we, therefore, propose a skyrmion logic synchronized via modulation of voltage-controlled magnetic anisotropy (VCMA). In addition to demonstrating the principle of VCMA synchronization through micromagnetic simulations, we also quantify the impacts of current density, skyrmion velocity, and anisotropy barrier height on skyrmion motion. Further micromagnetic results demonstrate the feasibility of cascaded logic circuits in which VCMA synchronizers enable clocking and pipelining, illustrating a feasible pathway toward energy-efficient large-scale computing systems based on magnetic skyrmions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.