Abstract

The La0.67Ba0.33MnO3(40 nm) films are quasi-coherently grown on an NdGaO3(001) substrate with an orthorhombic unit cell distortion of ∼1.4%. The biaxial compressive stresses generated during nucleation and growth lead to a decrease in the unit cell volume of the grown layers. This, in turn, results in a decrease (by ∼35 K) in the temperature of the maximum in the dependence of the electrical resistivity ρ of the layers on the temperature. For T < 150 K, the electrical resistivity ρ of the films increases in proportion to ρ2 T 4.5 and the coefficient ρ2 decreases almost linearly with increasing magnetic field H. The negative magnetoresistance (≈−0.17 for μ0 H = 1 T) reaches a maximum at temperatures close to room temperature. The response of the electrical resistivity ρ of the La0.67Ba0.33MnO3(40 nm) films to the magnetic field depends on the crystallographic direction of the film orientation and the angle between H and I (where I is the electric current through the film).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.