Abstract

Changes in the structural characteristics of mesophyll induced by shading were investigated in ten species of wild plants of diverse functional types. In all plant types, shading reduced leaf thickness and density by 30–50% and total surface of mesophyll, by 30–70%. The extent and mechanisms of mesophyll structural rearrangement depended on the plant functional type. In the ruderal plants, integral parameters of mesophyll, such as the surface of cells and chloroplasts and mesophyll resistance, changed threefold predominantly because of changes in the dimensions of the cells and chloroplasts. In these plants, shading reduced the volume of chloroplasts by 30%, and the chloroplast numbers per cell declined. The competitor plants showed a twofold increase in mesophyll resistance due to a decrease in the number of photosynthesizing cells per leaf area unit. Moreover, these plants maintained constant dimensions of mesophyll cells, ratios mesophyll surface/mesophyll volume and chloroplast surface/cell surface. In stress-tolerant plants, diffusion resistance of mesophyll remained the same irrespective of the growing conditions, and mesophyll rearrangement was associated with inversely proportional changes in the dimensions of the cells and cell volume per chloroplast. Noteworthy of these plants were relatively constant chloroplasts number per cell, per leaf area unit and total surface area of chloroplasts. The nature of relationship between the mesophyll diffusion resistance and structural parameters of leaf mesophyll differed in plants of diverse functional types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.