Abstract
Optical interconnects possess great potential in applications for short-distance, multiple channel parallel connections at the chip-to-chip, board-to-board, back plane, and local area network levels of high performance computing environments. Low-loss and high-bandwidth advantages of optical fiber over those for coaxial cables become sizable when the transmission speed exceeds multiple Gb/s. OEIC (Opto-Electronic Integrated Circuits) receivers and transmitters are suitable for both free-space and fiber-optic short-wavelength optical links. Such chip sets will be able to support link distances from less than 1 mm for chip-to-chip optical interconnects to over 1 km for local area network (LAN) systems. As a high-speed optical receiver for these systems, monolithic OEICs are very attractive because of their potential for high-speed operation, compactness, and cost reduction. In this paper, we will review the theoretical speed limit of MSM (Metal-Semiconductor-Metal) photodetector. 3-dB bandwidth of 50x50 um2 MSM detector will be studied. The recent progress on the 100 GHz MESFET (Metal Semiconductor Field Effect Transistor), InP HFET (Heterojunction Field Effect Transistor) and their OEIC receivers are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.