Abstract

The crucial role of Ni mode addition to Pd catalysts for low-temperature wet methane combustion is addressed, resulting in excellent performance of ultralow-Ni-containing catalysts versus inactive nickel–alumina spinel. Traditional impregnation–calcination and colloidal techniques of bimetallic catalyst preparation yield monometallic Pd particles on a binary NiAl2O4 support and Pd and Ni nanoparticles on the parent Al2O3 support, respectively. The catalyst is potentially valuable for natural gas catalytic combustion technologies because it decreases the required temperature for complete methane combustion in 5% water presence in the feed by 100 degrees versus monometallic Pd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.