Abstract
This paper presents the experimental validation, using the opposition method, of a high-power three-phase Wireless-Power-Transfer (WPT) system for automotive applications. The system under test consists of three coils with circular sector shape overlapped to minimize the mutual cross-coupling, a three-phase inverter at primary side and a three-phase rectifier at receiver side. In fact thanks to the delta configuration used to connect the coils of the electromagnetic structure, a three-phase Silicon Carbide (SiC) inverter is driving the transmitter side. The resonance tank capacitors are placed outside of the delta configuration reducing in this way their voltage sizing. This WPT system is used as a 100 kW–85 kHz ultrafast battery charger for light delivery vehicle directly supplied by the power grid of tramways. The adopted test-bench for the WPT charger consists of adding circulating boost converter to the system under test to perform the opposition method technique. The experimental results prove the effectiveness of the proposed structure together with the validation of fully exploited simulation analysis. This is demonstrated by transferring 100 kW with more than 94% DC-to-DC efficiency over 50 mm air gap in aligned conditions. Furthermore, testing of Zero-Current and Zero-Voltage commutations are performed to test the performance of SiC technology employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.