Abstract
We demonstrate an ultra-high Q-factor photonic crystal resonator operating in the millimeter-wave band, which is suitable for use as an integrated sensing platform. Experimental results show that at 100GHz a loaded Q-factor of 5000 and 8700 can be achieved with a strongly and weakly coupled cavity design, respectively. The uncertainty in the experimental results has been analyzed and a new technique of propagating uncertainty in S-parameter measurements for the determination of Q-factor is given. The result of this uncertainty analysis gives an unloaded Q-factor of 9040±300; being fundamentally limited to ∼10000 by the intrinsic dielectric loss of the high resistivity silicon substrate. Utilizing standard bulk-micromachining of silicon, the resonators can be monolithically integrated into RFICs and MMICs for applications including liquid and gas sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.