Abstract
ABSTRACTWe have investigated magnetoresistance properties of (100) epitaxial, (11) textured and polycrystalline spin valve heterostructures of the form Ni80Fe20/Cu/NiNi80Fe20/Fe50Mn50 on (100) Si substrates by ultra high vacuum (UHV) ion beam sputtering at room temperature. Magnetoresistance was measured as a function of Cu interlayer thickness (ti) with 10 Å ≤ti ≤ 100 Å and the maximum was found at 20 Å in the case of (100) epitaxial spin valves. Highly (11) textured spin valves with heterostructure configurations similar to the (100) spin valves were found to have a slightly lower magnetoresistance than the (100) heterostructures, but the functional dependence of the magnetoresistance on ti was very similar.Interface mixing during the sputtering process by energetic neutral bombardment was found to significantly affect the magnetoresistance. Samples were made under various sputtering conditions (gas pressure, ion beam energy, target and substrate configuration) that could enhance or suppress high energy neutral bombardment of the growing film surface. Samples made under the conditions that suppressed neutral bombardment showed higher magnetoresistance and more abrupt interfaces as confirmed by small angle X-ray diffraction analysis of interface mixing by energetic neutral bombardment during sputter deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.