Abstract

The possibility of a wind turbine entering vortex ring state (VRS) during pitching oscillations is explored in this paper. The work first validated the employed computational fluid dynamics (CFD) method, and continued with computations at fixed yaw of the NREL phase VI wind turbine. The aerodynamic performance of the rotor was computed using the helicopter multiblock (HMB) flow solver. This code solves the Navier–Stokes equations in integral form using the arbitrary Lagrangian–Eulerian formulation for time-dependent domains with moving boundaries. With confidence on the established method, yawing and pitching oscillations were performed suggesting partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.