Abstract
In December 2003 a new 10 kHz multiposition Thomson scattering diagnostic with high spatial resolution has become operational on the TEXTOR tokamak. The system is the follow up of the high-resolution double-pulse Thomson scattering diagnostic. The conventional ruby laser has been replaced by a 10 kHz intracavity laser system and the spectrometer detector has been upgraded with two ultrafast complementary metal–oxide–semiconductor cameras combined with a special image intensifier stage. In the initial phase of operation, a burst of 18 pulses decaying from 17 to 8 J, with a repetition rate of 5 kHz, could be extracted from the laser. At a laser energy up to 12 J per pulse, ten electron temperature and density profiles were measured with an observational error of 10% on the electron temperature (Te) and 5% on the electron density (ne) at ne=2.5×1019 m−3 per spatial element of 12 mm. The resolution of the detection optics enables to sample either the full plasma diameter of 900 mm with 120 spatial channels of 7.5 mm each, or a 160 mm long edge chord with 98 spatial channels of 1.7 mm each.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.