Abstract

To control the thermal wavefront distortion of repetition frequency laser, we′ve developed a water-cooled active-mirror laser amplifier, which was uniformly cooled from the rear of crystal disk. The numerical anslysis and experimental study on the characterstics of the amplifier’s thermal distortion were carried out. It was found that the thermal distorition devoted a significiant modulation to the near field of the laser when the average pump power density was as high as 200 W/cm2 with the operation frequency of 10 Hz. Near-field modulation would bring a risk to damage the amplifier. To eliminate the modulation of thermal distortion in the near field, two approaches were taken. Firstly, the pump intensity distribution was homogenized, then the edge thermal balance control was carried out. The near field modulation from thermal wavefront distortion was eliminated by these means, a four-pass amplifier with water-cooled laser heads ran well at 10 Hz. The focal spot of output laser was smaller than 5 diffraction limits without any compensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call