Abstract

Widely-tunable picosecond pulses have been generated from a harmonically mode-locked semiconductor optical amplifier (SOA) ring laser with a center wavelength spanning from 1491 to 1588 nm. An intra-cavity birefringence loop mirror filter is used to define a 1.6 nm comb that governs the wavelength spacing of the tunable output pulses. The filter also serves to control the spectral gain profile of the laser cavity and thus extends the tuning range. By exploiting the spectral shift of the SOA gain with different amount of optical feedback, the output can be obtained over a wid wavelength range. Applying mode-locking together with the dispersion tuning approach, 10 GHz picosecond pulses have been successfully generated over a tuning range of 97 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.