Abstract

To open up a 1-microm waveband for photonic transport systems, we developed a hybrid and harmonically mode-locked semiconductor laser (MLL) that can transmit return-to-zero (RZ) optical signals at data rates on the order of gigabits per second. A single-mode hole-assisted fiber (HAF) was also developed for use as a 1-microm waveband signal transmission line. A stable optical pulse train with a repetition rate of 9.953 GHz, pulse width of 22 ps, and low timing jitter of 120 fs was obtained from a 1035-nm harmonically MLL. With these devices, we successfully demonstrated 1-microm waveband error-free transmission of a high-speed 10-Gbps RZ signal over a long distance of 7 km.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.