Abstract

Heterogeneous and small cell networks (Het- SNets) increase spectral efficiency and throughput via hierarchical deployments. In order to meet the increasing requirements in capacity for future 5G wireless networks, millimeter-wave (mmWave) communications with unprecedented spectral resources have been suggested for 5G HetSNets. While the mmWave physical layer is well understood, major challenges remain for its effective and efficient implementation in Het- SNets from an access and networking point of view. Toward this end, we introduce a novel but 3GPP backwards-compatible frame structure, based on time-division duplex, which facilitates both high-capacity access and backhaul links. We then discuss networking issues arising from the multihop nature of the mmWave backhauling mesh. Finally, system-level simulations evaluate the performance of HetSNets with mmWave communications and corroborate the possibility of having capacities of tens of gigabits per second in emerging 5G systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.