Abstract

Secure distribution of high-speed digital encryption/decryption keys over a classical fiber channel is strongly pursued for realizing perfect secrecy communication systems. However, it is still challenging to achieve a secret key rate in the order of tens of gigabits per second to be comparable with the bit rate of commercial fiber-optic systems. In this paper, we propose and experimentally demonstrate a novel solution for high-speed secure key distribution based on temporal steganography and private chaotic phase scrambling in the classical physical layer. The encryption key is temporally concealed into the background noise in the time domain and randomly phase scrambled bit-by-bit by a private chaotic signal, which provides two layers of enhanced security to guarantee the privacy of key distribution while providing a high secret key rate. We experimentally achieved a record classical secret key rate of 10 Gb/s with a bit error rate lower than the hard-decision forward error correction (HD-FEC) over a 40 km standard single mode fiber. The proposed solution holds great promise for achieving high-speed key distribution in the classical fiber channel by combining steganographic transmission and chaotic scrambling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call