Abstract

We report density-functional and coupled-cluster calculations on conformation change and degenerate bond shifting in [10]annulene isomers 1-5. At the CCSD(T)/cc-pVDZ//CCSD/6-31G level, conversion of the twist (1) to the heart (2) has a barrier of 10.1 kcal/mol, compared to Ea = 16.2 kcal/mol for degenerate "two-twist" bond shifting in 1. Pseudorotation in the all-cis boat isomer (3) proceeds with a negligible barrier. The naphthalene-like isomer 4 has a 3.9 kcal/mol barrier to degenerate bond shifting. The azulene-like isomer 5 is the only species for which the nature of the bond-equalized form (5-eq) depends on the method. At the CCSD(T)/cc-pVDZ//CCSD/6-31G level, 5-eq is 1.2 kcal/mol more stable than the bond-alternating form 5-alt. Conversion of 5-eq to 4 has a barrier of 12.6 kcal/mol. Despite being significantly nonplanar, both 5-eq and the transition state for bond shifting in 4 are highly aromatic based on magnetic susceptibility exaltations. On the basis of a detailed consideration of these mechanisms and barriers, we can now, with greater confidence, rule out 4 and 5 as candidates to explain the NMR spectra observed by Masamune. Our results support Masamune's original assignments for both isolated isomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call