Abstract

It was found that modification of thiol (SH-) groups of membrane proteins by Ellman’s reagent (5,5′-dithiol-bis-(2-nitrobenzoic) acid) results in inhibition of proton efflux and K+ influx in anaerobically grown (pH 7.5) wild-type strains of Escherichia coli and causes disturbances in K+-dependent, N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity and molecular hydrogen production. No such effects were observed after substitution of the cysteine residue in the b-subunit of F0 of proton F0F1-ATPase for alanine. Moreover, the redox potential (RP) decreased as a result of H2 release during glucose fermentation and formate utilization was partly restored in the presence of Ellman’s reagent. Similar changes were established when another specific SH-reagent, succinimidyl-6(β-maleimidopropionamido)hexanoate, was used. Another thiol reagent, N-ethylmaleimide, did not exert such effects despite its inhibitory action on ion transport and ATPase activity. The data obtained provide conclusive evidence in favor of essential role of thiol groups and the cysteine residue in the b-subunit of F0 of F0F1-ATPase in proton-potassium exchange and H2 production in E. coli cells. The results also point to a possible involvement of SH-groups in the TrkA system of K+ uptake and an involvement of hydrogenases 3 or 4 in the interactions of these integral proteins with each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call