Abstract

In this article, a new theoretical approach to studying light-scattering characteristics of nanosized objects based on the solution to the Thomas-Fermi equation and quasi-classical approximation is considered. It is shown that the distribution of valence electrons in the volume of metallic clusters exhibits a specific structure of “spatial zones.” With the aid of quasi-classical wave functions, expressions for the appropriate dipole moments of the transitions between the ground and excited states are obtained; the behavior of the spectrum of gold clusters depending on their sizes is studied; a comparison with existing experimental data is carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.