Abstract

The complex dielectric permittivity in the frequency range 7.5–25.0 GHz and the low-frequency specific conductivity of aqueous solutions of diallylammonium salts (diallylammonium and diallylmethylammonium trifluoroacetates and diallyldimethylammonium chloride) were measured at 293–308 K over a wide concentration range. On the basis of the results, the parameters of dielectric relaxation were calculated. The number of water molecules in the solvation shell of the salts was estimated. The concentration behavior of the initial rate of radical polymerization of diallylammonium salts and the rate constant of bimolecular chain termination was correlated with the specific features of the structure of aqueous monomer solutions. The role of “free” water in the initial salt solutions was revealed, a species whose presence in the system determines the character of concentration behavior of the rate constants for the elementary steps of polymerization, such as propagation, chain transfer to the monomer, and bimolecular chain termination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call