Abstract

The convergence of the method of feasible directions is proved for the case of the smooth objective function and a constraint in the form of the difference of convex sets (the so-called preconvex set). It is shown that the method converges to the set of stationary points, which generally is narrower than the corresponding set in the case of a smooth function and smooth constraints. The scheme of the proof is similar to that proposed earlier by Karmanov.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.