Abstract

Experimental data on the dependence of the flat-band voltage and relaxation time for the capacitance of the space-charge region in an MOS diode (Pd-SiO2-n-Si) on the hydrogen concentration in a hydrogen/air gaseous mixture are discussed. It is assumed that variation in the flat-band voltage U fb in an MOS structure with the thickness d = 369 nm subjected to a hydrogen/air gaseous mixture can be accounted for by the formation of dipoles in the Pd-SiO2 gap due to polarization of hydrogen atoms (H a ). An analytical expression describing the dependence of variation in the flat-band voltage ΔU fb on the hydrogen concentration $$ n_{H_2 } $$ was derived. In MOS structures with d ≤ 4 nm (or MOS diodes), the value of ΔU fb is mainly controlled by passivation of the centers responsible for the presence of the surface acceptor-type centers at the SiO2-n-Si interface by hydrogen atoms. Analytical expressions describing the dependences of ΔU fb and the capacitance relaxation time in the space-charge region on $$ n_{H_2 } $$ are derived. The values of the density of adsorption centers and the adsorption heat for hydrogen atoms at the Pd-SiO2 and SiO2-n-Si interfaces are found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.