Abstract

Dipole magnetic moments of more than 100 odd spherical nuclei are calculated within the theory of finite Fermi systems. For the effective interaction of nucleons within the theory of finite Fermi systems, use is made of a version that takes into account nuclear-medium-modified amplitudes for the exchange of one pion and one rho meson. A new tensor local charge ζ t is incorporated in the theory of finite Fermi systems in addition to the known orbital (ζ l ) and spin (ζ s ) local charges. Good agreement with experimental data, at a level of 0.1 to 0.2μ N , is obtained for the overwhelming majority of the nuclei considered here. Several cases of a significant discrepancy with experimental data, at a level of 0.3 to 0.5μ N , are revealed. Possibilities for removing these discrepancies are discussed. A detailed comparison with known results obtained within the multiparticle shell model is performed for 2p-to 1f-shell nuclei. Cases where the standard theory of finite Fermi systems must be extended by taking into account multiparticle configurations are found. Magnetic moments are analyzed for a number of long isotopic chains. Several new experimental values of magnetic moments for copper isotopes far from the beta-stability valleys are known. For the example of the copper-isotope chain, it is shown how the emergence of a deformation in the ground state of a nucleus can be revealed on the basis of a systematic analysis of magnetic moments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call