Abstract
Many of the current visual odometry algorithms suffer from some extreme limitations such as requiring a high amount of computation time, complex algorithms, and not working in urban environments. In this paper, we present an approach that can solve all the above problems using a single camera. Using a planar motion assumption and Ackermann's principle of motion, we construct the vehicle's motion model as a circular planar motion (2DOF). Then, we adopt a 1-point method to improve the Ransac algorithm and the relative motion estimation. In the Ransac algorithm, we use a 1-point method to generate the hypothesis and then adopt the Levenberg-Marquardt method to minimize the geometric error function and verify inliers. In motion estimation, we combine the 1-point method with a simple least-square minimization solution to handle cases in which only a few feature points are present. The 1-point method is the key to speed up our visual odometry application to real-time systems. Finally, a Bundle Adjustment algorithm is adopted to refine the pose estimation. The results on real datasets in urban dynamic environments demonstrate the effectiveness of our proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.