Abstract
Vertebrate embryos, despite quite diverse early morphologies, appear to employ similar cellular strategies and conserved biochemical pathways in their development (Eyal-Giladi, 1997). In the past decade, a small tropical teleost, zebrafish (Danio rerio), became an important model system in which to study development (Streisinger et al., 1981). By combining embryology with molecular and classical genetic methods, our understanding of early inductive and morphogenetic events during vertebrate embryogenesis significantly advanced. In zebrafish, dorsal-ventral polarity is established during early cleavage and is dependent on microtubular transport of determinants from the vegetal pole to the blastomeres positioned on top of the yolk cell. The syncytium forming from these marginal blastomeres in the early blastula exhibits dorsal-ventral asymmetry with beta-catenin localized to the nuclei on the presumptive dorsal side of the syncytium. The yolk cell is a source of signals that induce and pattern overlying blastoderm. Therefore, the dorsal yolk syncytial layer is equivalent to the Nieuwkoop center of the amphibian embryo. The embryonic shield, a thickening of the dorsal blastoderm margin, exhibits properties similar to the amphibian Spemann organizer. However, certain inductive and patterning signals from the organizer might be produced before the shield forms or might originate outside of the shield. Similar to the amphibian embryo, the key patterning functions of the fish dorsal organizer (i.e., dorsalization of mesoderm, ectoderm, and coordination of gastrulation movements) are performed by secreted molecules that antagonize the ventralizing activity of the swil (zbmp-2) and zbmp-4 gene products expressed on the ventral side of the embryo. These functions of the dorsal organizer require the activity of the chordino gene (a zebrafish homologue of chordin), bozozok, mercedes and ogon loci.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.