Abstract

Due to its cost-effectiveness and high product selectivity, tin oxide has been regarded as a promising catalyst for the electrochemical conversion of CO2 to formate. However, formate production is hindered by the high overpotential; there is a need to reduce the overpotential to enhance energy efficiency and lower electricity cost for the implementation of carbon utilization technology. Here, we report a facile synthesis method for 1 nm-sized SnO2 cluster catalysts, which can be used for CO2-to-formate conversion. SnO2 clusters were prepared through impregnation of porous carbon with a tin precursor solution. The SnO2 clusters showed a low overpotential, generating a current density of 10 mA cm-2 at a potential of -0.34 V vs. RHE in 1 M KOH. They also achieved high Faradaic efficiencies of 90.5% and 81.5% at 200 and 300 mA cm−2, respectively. Their electrocatalytic performance was strongly dependent on the annealing conditions, which affected the particle size, electrochemical active surface area, and metal oxidation state. This paper presents a versatile method for synthesizing metal oxide cluster catalysts, apart from providing insights into the catalytic activity for the electrochemical conversion of CO2 to formate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call