Abstract
The problem of finding (−1, 1)-matrices with vanishing permanent was posed by Edward Wang in 1974. This paper states and proves bounds on the number of negative entries in a matrix with zero permanent and minimal number of negative entries among all matrices of the same equivalence class. Then representatives of every equivalence class of matrices with zero permanent are found for n ≤ 5. Bibliography: 20 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.