Abstract
The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state (1)H and (19)F spin-lattice relaxationexperiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance(NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of (19)F-(19)F and (19)F-(1)H spin-spin dipolar interactions on the complicated nonexponential NMRrelaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually (1)H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.