Abstract
This study aims to explore the role of 1-Deoxynojirimycin (DNJ) in high glucose-induced β-cells and to further explore the molecular mechanism of DNJ effect on β-cells through network pharmacology. In the study, high glucose treatment of mouse INS-1 cells inhibited cell proliferation and insulin secretion, decreased the expression of Bcl-2 protein and Ins1 and Ins2 genes, promoted apoptosis, and increased cleaved caspase-3 and cleaved caspase-9 expression levels as well as intracellular reactive oxygen species (ROS) production. DNJ treatment significantly restored the dysfunction of INS-1 cells induced by high glucose, and DNJ showed no toxicity to normal INS-1 cells. Silencing CEBPA promoted, while overexpression of CEBPA relieved the dysfunction of pancreatic β-cells induced by high glucose. DNJ treatment partially restored the pancreatic β-cell dysfunction caused by silencing CEBPA. In conclusion, DNJ can inhibit high glucose-induced pancreatic β-cell dysfunction by promoting the expression of CEBPA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemistry and cell biology = Biochimie et biologie cellulaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.