Abstract

A thermal, three-phase, one-dimensional numerical model is developed to simulate two regimes of gas production from sediments containing methane hydrates by depressurization: the dissociation-controlled regime and the flow-controlled regime. A parameter namely dissociation-flow time-scale ratio, Rτ, is defined and employed to identify the two regimes. The numerical model uses a finite-difference scheme; it is implicit in water and gas saturations, pressure and temperature, and explicit in hydrate saturation. The model shows that laboratory-scale experiments are often dissociation-controlled, but the field-scale processes are typically flow-controlled. Gas production from a linear reservoir is more sensitive to the heat transfer coefficient with the surrounding than the longitudinal heat conduction coefficient, in 1-D simulations. Gas production is not very sensitive to the well temperature boundary condition. This model can be used to fit laboratory-scale experimental data, but the dissociation rate constant, the multiphase flow parameters and the heat transfer parameters are uncertain and should be measured experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.