Abstract

AbstractSince the pioneering report by Selvin, we have been fascinated by the potential of using lanthanide luminescence in bioimaging. The uniquely narrow emission lines and long luminescence lifetimes both provide the potential for background free images together with full certainty of probe localization. General use of lanthanide based bioimaging was first challenged by low brightness, and later by the need of UV (<405 nm) excitation sources not present in commercial microscopes. Here, we designed three lanthanide‐based imaging probes based on a known motif to investigate the limitations of 405 nm excitation. These were synthesized, characterized, investigated on dedicated as well as commercial microscopes, and the photophysics was explored in detail. It was proven without doubt that the lanthanide complexes enter the cells and luminesce internally. Even so, no lanthanide luminescence were recovered on the commercial microscopes. Thus, we returned to the photophysical properties that afforded the conclusion that – despite the advances in light sources and photodetectors – we need new designs that can give us brighter lanthanide complexes before bioimaging with lanthanide luminescence becomes something that is readily done.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call