Abstract

Abstract Due to the relative abundance, long half-life and high mobility of radioactive cesium (Cs), new adsorbents are urgently needed to treat Cs to ensure public health. In this study, a graphene oxide (GO) based adsorbent for Cs(I) adsorption was prepared by 1-aza-18-crown-6 ether modification. XRD, FT-IR, XPS and SEM results showed that the properties of 1-aza-18-crown 6 ether modified GO (18C6-GO) changed dramatically compared with that of raw graphite. The adsorption properties of 18C6-GO for Cs(I) were studied by batch static adsorption experiments. The results showed that the adsorption equilibrium time of 18C6-GO was 20 h. Kinetic study revealed that the adsorption rate of Cs(I) conformed to pseudo-second-order kinetic model. Langmuir adsorption isotherm simulation indicated that the adsorption arises at homogeneous adsorption sites on 18C6-GO. Therefore, crown ether modified GO may have implications for the treatment of wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call