Abstract

(1-Aminoethyl)boronic acid (Ala-B), an analogue of alanine in which a boronic acid group replaces the carboxyl group, has been synthesized and found to inhibit the first two enzymes, alanine racemase (from Bacillus stearothermophilus, EC 5.1.1.1) and D-alanine:D-alanine ligase (ADP-forming) (from Salmonella typhimurium, EC 6.3.2.4), of the D-alanine branch of bacterial peptidoglycan biosynthesis. In both cases, time-dependent, slow binding inhibition is observed due to the generation of long-lived, slowly dissociating complexes. Ala-B inhibits alanine racemase with a Ki of 20 mM and a kappa inact of 0.15-0.35 min-1. Time-dependent loss of activity is paralleled by conversion of the 420-nm chromophore of initial bound PLP aldimine to a 324-nm absorbing species. On dilution of Ala-B, racemase activity is regained with a t1/2 of ca. 1 h. The D-Ala-D-Ala ligase also shows progressive inhibition by Ala-B provided ATP (but not AMP-PNP or AMP-PCP) is present. The presence of D-alanine along with ATP also leads to Ala-B-induced inactivation. Kinetic analysis suggests Ala-B can compete with D-alanine at either of the two D-alanine binding sites, and on inactivation with Ala-B, labeled D-alanine, and labeled ATP, the inactive enzyme has stoichiometric amounts of D-alanine, ADP, Pi, and Ala-B bound. The half-life of inactive enzyme complexes varied from approximately 2 h (without D-alanine) to 4.5 days (with D-alanine). No D-Ala-D-Ala-B dipeptide was detected.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call